Neural Taskonomy: Inferring the Similarity of Task-Derived Representations from Brain Activity

Aria Y. Wang1,2, Leila Wehbe1,2, Michael J. Tarr1,2,3

1Carnegie Mellon Neuroscience Institute, 2Machine Learning Department, 3Department of Psychology

Introduction

- “Taskonomy” describes the task relationships found through transfer learning using computer vision models1.
- The Goal: Does the brain represent task information the similar way as found through transfer learning?
- BOLD50002 – fMRI dataset using stimuli sampled from ImageNet, COCO and SUN.

- Method: We extracted features from the latent spaces of 19 vision tasks in the Taskonomy model bank1 and constructed encoding models to predict brain activity to images. Prediction maps were used to infer the relationships between tasks.

Model Performance - Whole Brain

- Scene Class
- Distance
- Vanishing Points
- 3D vs. 2D

Model Performance - ROIs

- 2D Edges
- 3D Edges
- 2D Keypoint
- 3D Keypoint
- 2D Segm.
- 3D Segm.
- Depth
- Normal
- Occlusion
- Color
- Curve

Neural Taskonomy

- Object Class
- Layout
- Normal
- Distance
- Occlusion
- Depth
- 2D Segm.
- 3D Segm.
- Scene Class
- Vanishing Pts.
- Semantic Segm.
- 2D Keypoint
- 3D Keypoint
- Autocoding

Conclusions

- Task-specific models are useful for explicating the neural encoding of task-related information.
- Features from 2D tasks and 3D tasks recruit distinct regions of visual cortex (3D features preferred).
- The neural representation of different tasks can be used to infer the relationships between tasks.

References